
Governance for Data-in-Motion
Paul Harvener, Principal Consultant, Data–Blitz

Overview:

At Data-Blitz, we've noticed a growing interest in governance and data quality control for data in motion. This
paper serves as a comprehensive guide for software engineers looking to create a proof of concept (POC)
focused on governance for data in motion. It includes all the necessary artifacts to build and execute such a POC
successfully. POCs involving distributed systems often demand detailed knowledge of each component
involved, which can be daunting. Frequently, these efforts are constrained by limited time allocations from
management. This guide addresses these challenges by providing a step-by-step process for designing and
executing a Data Governance POC for data in motion, leveraging the Confluent Platform Schema Registry and
Data Contracts. All the required artifacts are provided in the appendices and to a linked Git repository
containing all the prebuilt artifacts for easy access. Data in motion refers to data actively moving through a
system's pipeline. Wikipedia defines data in motion as:

This paper examines data in motion within stream processing using Kafka. Confluent through the Confluent
Platform Enterprise Addition provides tools designed to enforce data quality and transformation efficiently.
Although the idea is not new, in the past, ensuring data quality in motion primarily focused on encryption,
typically implemented via SSL/TLS. While encryption has become largely standardized, data transformation
and semantics have often been handled by custom implementations on both the producer and consumer sides.
Many organizations developed custom data producers to validate data against a defined standard, rejecting any
data that failed to meet this benchmark.

This use case naturally led to the development of more reusable solutions. Confluent began addressing this
challenge with the release of the Confluent Schema Registry in 2018. The Schema Registry validated the
structure of data against predefined schemas and provided a framework for migrating schema changes. It
allowed consumers to work with either the old or new schema, enabling organizations to roll out changes

	 	 1

without disrupting existing systems. Over time, older consumers could gradually transition to the new schema
without breaking functionality during the interim, a game-changing approach that greatly improved the quality
of data in motion.

More recently, Confluent introduced tools for controlling data semantics as well. This paper explores the use of
Confluent Data Contracts between data Producers and Consumers, providing a comprehensive solution for
managing both structure and semantics in data streams.

Confluent Data Contracts shift the responsibility for ensuring data quality to Producers by establishing a binding
and enforceable agreement between data Producers and Consumers. This approach, known as "shift-left",
empowers producers to uphold the integrity of the data’s structure and meaning before it reaches consumers.
With the contract in place, consumers can rely on the incoming data’s accuracy and consistency, confident that it
aligns with the agreed-upon standards. In a streaming architecture, data contracts provide critical transparency
into data dependencies and usage, ensuring consistent, reliable event streams while serving as a definitive
reference point for understanding the flow and structure of data in motion.

Kafka-based messaging systems are the logical choice for enforcing data governance in motion because they act
as the central conduit through which all data passes in a distributed architecture. Kafka serves as the backbone
for real-time data streams, connecting data producers and consumers in a way that naturally lends itself to
centralized enforcement of governance policies. By establishing data contracts at this central point of flow,
Kafka ensures that data governance rules, such as schema validation, data quality checks, and security policies,
are consistently applied before data reaches its destination.

With Kafka, all data passes through a single pipeline, making it the ideal place to enforce governance policies
across multiple systems and teams. As data is produced, Kafka can validate it against predefined schemas, check
for compliance with data contracts, and flag any discrepancies immediately, allowing issues to be caught and
corrected before they propagate downstream. This centralized enforcement relieves pressure on downstream
consumers, who can trust that the data they receive is already clean, consistent, and compliant with governance
rules. It eliminates the need for multiple systems to enforce their governance measures independently, reducing
complexity and ensuring uniformity across the data ecosystem.

Kafka’s ability to handle large volumes of data in real time also makes it perfect for flagging bad data as soon as
it appears, providing actionable insights that producers can use to resolve issues at the source. This proactive
approach improves data quality and reduces the time and cost associated with identifying and correcting bad
data later in the pipeline. Additionally, Kafka’s integration with monitoring and alerting tools enhances visibility
into data flows, enabling more effective governance.

While data at rest remains important, governance in motion, enforced through Kafka, plays a critical role in
ensuring that data is of high quality before it even reaches storage. The governance of data at rest complements
this by ensuring that once the data is stored, it remains secure, compliant, and accurately reflects the original

	 	 2

stream. In this way, Kafka messaging systems bridge the gap between real-time governance and long-term data
management, ensuring that data is governed throughout its entire lifecycle from the moment it’s generated to
when it’s archived or analyzed. This integrated governance model helps maintain the integrity, reliability, and
security of data, whether in motion or at rest, making Kafka a cornerstone for modern data governance
strategies.

Confluent Platform’s Data Governance Ecosystem

• !"#$%&'($)*+,-./

The Confluent Schema Registry is a centralized service that manages schemas for Kafka topics. It
ensures producers and consumers use consistent and compatible data formats, enabling seamless
schema evolution and data governance. A schema plays a central role in a data contract by defining the
structure, data types, and constraints for the key and value fields of the data being transmitted.
Schemas ensure that both producers and consumers of data are aligned on the data’s format and
structure.

Support ed Schema Formats

The Confluent Schema Registry supports different schema formats, each with its strengths:

1. Avro: A compact and fast binary format that is widely used for serialization in Kafka. Avro
supports schema evolution, making it ideal for use cases where data structures change over time.

2. JSON: A human-readable format that is commonly used for data serialization. While it is not as
space-efficient as Avro, JSON is easier to inspect and debug.

3. Protobuf: A binary format developed by Google, known for its efficiency and flexibility. Protobuf
supports both forward and backward schema compatibility, making it useful in distributed systems.

ARVO is currently the most used streaming protocol. It is an optimized form of JSON but uses it's own
schema definition format As stated before, this paper only describes streaming goverance using ARVO.

Key Components of the Schema Registry

1. Schema Storage:
• Stores schemas for Kafka topics and versions them.

2. Subject:

	 	 3

• A Subject represents a schema namespace, typically associated with a Kafka topic.
• Subjects schemas are divided between value schemas and key schemas.
• Subjects can have multiple versions, representing schema evolution.

3. Migration:
• Define how schemas evolve and interact with existing versions.
• Types: Backward, Forward, and No Compatibility.

Backward Compatibility

When using the Kafka Schema Registry in BACKWARD compatibility mode, the goal is to ensure
that the new schema can successfully read data produced by older versions of the schema. This mode
focuses on making sure producers who upgrade to the new schema do not break existing consumers
reading data from the older schema’s format.

Allowed (Non-Breaking) Changes Under BACKWARD Compatibility:

1. Adding New Fields With Defaults:

You can safely add new fields to the schema as long as each new field includes a default
value. This ensures that data encoded with the old schema (which lacks the new fields) can
still be read by the new schema. When encountering older data, the new schema uses the
default values for the missing fields.

2. Removing Fields That Had Defaults:

If a field previously had a default value, you can remove it without breaking backward
compatibility. Older data that included this field is still readable because the new schema can
interpret the data’s absence of the field as falling back to a scenario consistent with older
versions (though it effectively ignores that field’s data now).

3. Adding Symbols to Enums:

You can add new symbols (values) to an enum. Older data that doesn’t use the new symbols
remains perfectly readable by the new schema, and no errors are introduced.

4. Reordering Fields or Changing Documentation:

	 	 4

Reordering fields in an Avro schema or changing documentation (`doc` fields) does not break
backward compatibility. Avro identifies fields by name, not position, and documentation does
not affect data interpretation

Breaking Changes Under BACKWARD Compatibility

1. Removing Required Fields (Without Defaults):

If you remove a field that did not have a default value, the new schema will not know how to
interpret older data containing that field. This breaks backward compatibility.

2. Changing Field Types Incompatibly:

 Altering a field’s type to something that older data cannot be interpreted as (e.g., changing
from `int` to `string` without a union that supports both) breaks backward compatibility. The
new schema won’t be able to read older data correctly if its fields have incompatible types.

3. Renaming Fields Without Aliases:

If a field name changes, the new schema no longer recognizes the old field name found in
historical data, making it impossible to read that old data without additional migration
mechanisms (like aliases).

4. Removing Enum Symbols:

Dropping an enum symbol expected by older data results in unreadable data for that field,
breaking backward compatibility.

5. Changing Defaults of Existing Fields:

Updating a default value that already existed can break backward compatibility if the new
default value conflicts with expectations or assumptions of older data readers.

 Summary:

Backward compatibility allows newer schemas to consume older data without issues, as long
as changes are limited to adding fields with defaults, adding enum symbols, and minor
schema adjustments that don’t break the interpretation of existing fields. More disruptive
changes, such as removing required fields or altering field types, are considered breaking
under BACKWARD compatibility. 

	 	 5

Forward Compatibility

Forward compatibility means that older consumers using the old schema should be able to read data
produced by newer producers using the new schema. In other words, changes to the schema should be
made in such a way that old readers can still interpret the new data without errors.

Allowed (Non-Breaking) Changes Under FORWARD Compatibility:

1. Adding New Fields (with Defaults): 
Adding a new field that old consumers do not know about is safe as long as the field can be
ignored by the old schema. Avro’s name-based resolution means the old schema simply won’t
look for this new field, and thus won’t break. Providing a default value is still a good practice,
though it mainly affects backward compatibility.

0 Note: While not strictly required for forward compatibility (since old readers ignore
unknown fields), defaults ensure smoother backward and full compatibility.

2. Reordering Fields or Adding Documentation: 
Changing the order of fields or adding documentation (doc fields) does not affect how old
consumers read data. Avro uses field names to match data rather than relying on order.
Documentation changes are informational only.

Potentially Allowed (With Caution):

1. Adding Enum Symbols: 
If the new schema includes additional enum values, older schemas won’t recognize these new
values if they appear in the data. If older readers encounter these new enum values, they may
fail, making this potentially a breaking change for forward compatibility. Generally, avoid
adding new enum symbols if old consumers must understand them.

Breaking Changes Under FORWARD Compatibility:

1. Removing Fields Expected by Old Schema Without Defaults: 
If the old schema expects a certain field (it has no default) and the new schema’s data no longer
provides it, the old consumers can’t fulfill their expectation for that field. This breaks forward
compatibility since old consumers can’t read data they assume must exist.

2. Changing Field Types Incompatibly: 
If the new schema changes a field’s type to something the old schema cannot interpret, old
consumers won’t be able to read that field’s data correctly. For example, changing an int to a
string could cause reading issues for the old schema.

	 	 6

3. Removing Enum Symbols: 
If older consumers rely on certain enum values and you remove them in the new schema, old
consumers expecting those symbols can’t decode the data properly.

4. Renaming or Removing Fields Without a Clear Migration Path: 
Old consumers that look for a field by its original name won’t find it if it’s been removed or
renamed without aliases. Since old consumers do not have knowledge of the rename, they
cannot read the data as intended.

5. Altering Union Composition: 
Adding or removing types from a union field in a way that old schemas cannot handle breaks
forward compatibility. If old consumers expect certain union branches that no longer exist, they
can’t properly decode the data.

Summary:
 
To maintain forward compatibility, ensure that old consumers can still interpret the new data. Avoid
removing fields that older consumers need, changing field types incompatibly, or removing enum
symbols. Adding completely new fields is usually safe since old consumers ignore unknown fields. The
key is that data produced with the new schema must still fulfill the expectations of the old schema so
old consumers can read it without error.

Full Compatibility (Forward and Backward)
Full compatibility means the schema must maintain both backward and forward compatibility at the
same time. In other words, new schemas must be able to read all previously produced data (backward
compatibility), and old schemas must be able to read data produced by the new schema (forward
compatibility).

 Allowed (Non-Breaking) Changes Under Full Compatibility

1. Adding New Fields with Default Values :

• Backward Compatibility: The new schema can read older data that doesn’t include the new
field by using the default value.

• Forward Compatibility: Older schemas ignore unknown fields, so they remain unaffected.

2. Reordering Fields :

• Avro uses field names rather than positions, so reordering fields does not affect reading
older or newer data.

3. Adding Documentation or Changing doc Fields :

	 	 7

• Documentation changes do not affect how data is interpreted.\

4. Making a Required Field Optional by Adding a Default :

• Older data (lacking this field) can still be interpreted by the new schema using the default
value.

• Older schemas ignore the new optional field, remaining forward compatible.

5. Adding Enum Symbols (With Caution) :

• If older schemas encounter a new enum symbol, they may not know how to handle it. To
maintain true full compatibility, ensure the new symbol is not actually encountered by older
consumers or plan a coordinated upgrade.

 Breaking Changes Under Full Compatibility

1. Removing Required Fields Without Defaults :

• Backward Break: The new schema won’t know how to interpret old data that depended on
the removed field.

• Forward Break: Older schemas expecting this field won’t find it in the new data.

2. Changing Field Types Incompatibly :

• Altering a field’s type (e.g., from `int` to `string`) breaks older and newer schemas’ ability to
interpret data consistently

3. Renaming Fields Without Aliases :

• If you rename a field without providing aliases or a strategy for old schemas to recognize it,
old schemas break. Similarly, the new schema can’t interpret old data correctly.

4. Changing Default Values of Existing Fields :

• Old data might depend on the original default values. Changing them disrupts backward
compatibility. Old schemas interpreting new data may rely on the old defaults, breaking
forward compatibility.

5. Removing Enum Symbols :

	 	 8

• If older schemas expect certain symbols and they’re removed, they can’t interpret the new
data. If newer schemas interpret old data that includes now-removed symbols, they fail.

6. Altering Union Types Incompatibly :

• Removing or changing union branches can break how both old and new schemas understand
the data.

 Summary:

To maintain full compatibility, schema evolution must be done very carefully. You can add
new fields (with defaults), reorder fields, add documentation, or make fields optional by
adding defaults. However, removing fields, changing field types, renaming fields, or removing
enum symbols will break compatibility both backward and forward. By adhering to these
rules, you ensure that both older and newer consumers and producers can continue interacting
seamlessly, regardless of which schema version they use.

Schema Registry Migration Summary:

While the Confluent Schema Registry supports communication and synchronization of
schema evolution between producers and consumers, it sometimes lacks the flexibility to
accurately represent real-world scenarios of schema changes. As noted, many modifications
rely on having attributes defined with default values. In Avro, providing defaults is the
primary mechanism for indicating optional fields, which can feel like a limitation since it’s the
only built-in approach. Having defaults can sometimes undermine the very purpose of
maintaining a schema.

Later, we will introduce Confluent Platform’s data contracts and migration rules to address
these shortcomings. In the meantime, the following table summarizes the legitimate schema
changes allowed under the three compatibility modes: backward, forward, and full. 

	 	 9

Schema Migration Matrix

Schema Change Backward Compatible? Forward Compatible? Fully Compatible?

Add a new field with a
default value

Yes Yes Yes

Remove a field that had a
default

Yes Yes (if old readers ignore it) Yes (generally safe)

Add an enum symbol Yes Potentially No (old readers
may fail if they see it)

Potentially (use with caution)

Remove a required field
(no default)

No No No

Change a field’s type to an
incompatible type

No No No

Rename a field without
providing an alias

No No No

Change the default value
of an existing field

Potentially No (if old data
relies on it)

Potentially No (old readers
expect the old default)

No

Remove an enum symbol No No No

Reorder fields Yes Yes Yes

Add or change
documentation (`doc`
fields)

Yes Yes Yes

Modify union types by
adding/removing branches

Generally No Generally No Generally No

```

Confluent Kafka Platform Schema migration options

	 	 10



Key and Value Schemas

 In Kafka topics, both the key and value of a message can have their distinct schemas. Within the 
Confluent Schema Registry, these schemas are represented separately but are stored under the same 
Subject  By default:

• The key schema is named subject-key.

• The value schema is named subject-value.

Schemas, Subjects, Topics, and Aliases   

Before diving deeper, let’s clarify some key terms and their relationships within the Schema Registry 
ecosystem:

• Kafka Topics:     

A Kafka topic is a stream of messages, where each message consists of a key-value pair. Either the 
key, the value, or both can be serialized using Avro, JSON, or Protobuf formats.

• Schemas:     

 A schema defines the structure and data types of your message data. It determines which fields are 
included, their types, and how they’re represented.

• Subjects:     

Schema Registry introduces the concept of a subject, serving as a namespace within which schemas 
evolve. Subjects let you manage and version schemas independently of the Kafka topic’s name.

By default, the subject name strategy derives the subject name from the topic name. However, the 
association between a Kafka topic and a schema (subject) is not strictly one-to-one, allowing greater 
flexibility and reuse of schemas across topics.

•    Subject Aliases   

Starting with Confluent Platform 7.4.1 and in Confluent Cloud, you can configure one subject to act 
as an alias for another. For example, suppose you’ve registered a schema under the subject 

	 	 11



`my.package.Foo`, but you now want to apply that same schema to messages produced to a Kafka 
topic named `mytopic`.

With the default `TopicNameStrategy`, most clients expect the schema for `mytopic`’s record values to 
be available under the subject `mytopic-value`. Instead of re-registering the schema under a different 
subject or changing the subject naming strategy, you can simply set up an alias. This allows the schema 
defined in `my.package.Foo` to be used as if it were registered under `mytopic-value`, streamlining 
schema management and reducing overhead.

Schema Versioning and Subject Association

Schemas within a subject are versioned to allow for changes over time without breaking existing 
integrations. When a schema is updated, the Schema Registry assigns it a new version number under 
the same subject. This versioning system allows for schema evolution, where new fields can be added 
or existing fields can be modified while ensuring backward and forward compatibility.

Each subject is typically associated with a Kafka topic, ensuring that every message sent to that topic 
conforms to the schema defined in the subject. The versioning mechanism allows consumers to 
interpret data according to the correct version of the schema, maintaining data consistency even as 
schemas evolve.

By linking subjects to topics, the Schema Registry ensures that data contracts are enforced across 
Kafka topics, guaranteeing that data producers and consumers adhere to the agreed-upon schema at all 
times.

Composition of a Subject

Below is diagram illustrating the composition of a Subject.

	 	 12



As shown in the diagram, a subject can optionally include metadata, a ruleSet, and a schema. The 
ruleSet itself can be composed of both domain rules and migration rules.

Confluent Data Contracts:

Confluent Data Contracts enhance the capabilities of the Confluent Schema Registry by allowing 
more than just schemas to be included. A Data Contract may consist of a schema alone, or it can also 
include optional Metadata and Data Quality Rules. Together, these components are versioned and 
stored as a Subject within the Schema Registry. The diagram below illustrates this structure:

The diagram above illustrates the structure of a Subject. The Subject is represented as a JSON 
document and submitted to the Confluent Schema Registry, where it is stored and assigned a version 
and unique ID. The Schema Registry provides a RESTful API that enables the provisioning of 
Schemas, Metadata, and Rulesets for a specific Subject.

Rules within the Rulesets can reference both Metadata and Schema attributes. Rules can be designed to 
validate or enforce conditions based on specific attributes defined in the schema, as well as information 
provided in the Metadata. This allows for more comprehensive validation logic, ensuring that the data 
adheres to both structural and contextual semantic requirements before being accepted or processed. 

	 	 13



Metadata:

Metadata plays a critical role in enriching the data beyond its structural definition (as provided by the 
schema). Metadata can serve both informational and operational purposes, providing context and 
enabling more sophisticated governance and validation processes through rule sets.

At a basic level, metadata can be purely informational, providing descriptive details about the data, 
such as:

• Data lineage: Describing where the data originated, the transformations it has undergone, or 
who the data producer is.

• Ownership and stewardship: Indicating who is responsible for the data, both technically 
and from a business perspective.

• Usage guidelines: Offering information on how the data should be used, including any 
relevant compliance, privacy, or policy constraints.

• Classification: Labeling the data for categorization purposes, such as confidential, personal 
data, financial data, etc.

Metadata for Rule Sets:

Metadata is not just for documentation purposes; it can also serve as a functional part of the data 
governance system. In this capacity, it acts as a driver for rules within rule sets that operate at runtime. 
Rules can reference metadata to influence how the data is validated, transformed, or processed. 
Examples include:

• Contextual validation: 

Metadata might include thresholds or business rules, such as a maximum allowable value for 
a field. Rules can reference this metadata to perform real-time validation.

• Data retention policies: 

Metadata can specify how long data should be stored or under what conditions it must be 
archived or deleted, allowing rules to automatically manage these operations.

	 	 14



• Tagging for rule enforcement: Data might be tagged with specific attributes, such as 
"requires encryption" or "subject to GDPR." Rules can then reference these tags to enforce 
compliance, such as ensuring that sensitive data is encrypted before being transmitted or 
stored.

• Conditional logic: Based on metadata, rules can apply different validation or transformation 
logic. For example, if metadata indicates that data comes from a particular region, region-
specific validation rules may be applied.

Dynamic Rule Referencing 

The combination of schema attributes and metadata allows rules to dynamically adjust based on the 
data context. For instance:

• A rule might validate a field's value against a range specified in metadata (e.g., a credit score field 
must be within a range set by a regulatory requirement stored in the metadata).

• Rules could enforce that certain fields are required, optional, or subject to specific conditions, 
depending on metadata tags like "high priority" or "sensitive data."

In this way, metadata adds a layer of flexibility and context that allows for more dynamic and 
adaptive rule enforcement, enabling systems to respond to a wide range of business, 
operational, and compliance needs. It helps ensure that the data is not only structurally 
correct (validated by the schema) but also contextually correct, meeting business 
requirements and policy standards defined in the metadata

Data Contract RuleSets:

Data quality rules are critical in ensuring that data meets predefined standards before it is processed by 
downstream systems. These rules enforce consistency, accuracy, and compliance with business 
requirements, enhancing the overall reliability of data within a streaming architecture. Confluent's 
stream governance package, when enabled within the Schema Registry configuration, allows the 
enforcement of these data quality rules alongside schemas and metadata. 

	 	 15



Types of Data Contract RuleSets

Data contract rule sets are available in two forms. Both types can leverage expression logic using the 
Google Common Expression Language (CEL) or JSONata. Additionally, Data Contracts support 
custom Rule Executors implemented in Java, allowing for more specialized validation and 
transformation.

• domainRules:
Domain Rules focus on validating the current data against domain logic and constraints to 
ensure data quality and correctness

• mirgrationRules:
Migration Rules focus on evolving schemas over time, enabling smooth transitions between 
schema versions without breaking existing producers or consumers.

 In a single ruleSet, you might combine both domain and migration rules: domain rules to maintain data 
quality and correctness now, and migration rules to ensure compatibility as your schema and business 
requirements evolve.

POC Examples:

All the upcoming examples will utilize an Avro schema and demonstrate scenarios such as Subjects with 
Complex Migration Rules, Domain Validation Rules leveraging Dead Letter Queues (DLQ),. These examples 
will run on the Confluent Platform Enterprise Edition, set up using Docker Compose. The host machine is 
expected to have access to Docker Hub and be capable of establishing a local network within the Docker 
Compose environment. We will use `console-avro-producer` and console-avro-consumer for message 
production and consumption, respectively.

This document provides all the necessary content to successfully execute each example without requiring 
additional references to documents covering the detailed usage of each runtime layer. While understanding the 
implementation layers is important, the focus here is to ensure everything needed to run the examples is 
contained in one place. 

Additionally, all the referenced artifacts, including the example configurations and schemas, are contained 
within the appendices of this document or can be cloned from the GitHub repository at 

	 	 16



https://github.com/data-blitz-demos/data-in-motion

Example 1 Data Structural Governance:

In our first example, we demonstrate sending AVRO messages to a specified topic, with the Schema Registry 
enforcing the schema structure. Any messages that do not conform will cause the producer to fail, illustrating a 
basic form of data governance. We will use this as a baseline for other examples, each introducing additional 
forms of data governance for data in motion. Please follow the steps below. 

1. We will be deploying our Confluent Platform Kafka ecosystem using Docker Compose, so you"ll need to 
install Docker on your machine. You can download Docker from the following link:

https://www.docker.com/products/docker-desktop

2. We will use curl to interact with the Confluent REST interfaces for the REST Proxy, Broker, and Schema 
Registry. Please download and install curl from the following link:

https://curl.se/download.html 

Note: Mac users can also use Brew
Choose the correct installation for your machine's operating system.

3. Download and install the jq library, a command-line tool that allows you to parse, filter, and transform 
JSON data efficiently. You can get it from the following link:

https://jqlang.github.io/jq/download/ 

Note: Mac users can also use Brew
      Choose the correct installation for your machine's operating system.

4. Optionally, download and install Visual Studio Code VSC from the following link. 

https://code.visualstudio.com/download

Choose the correct installation for your machine’s operating system. Note: This is optional; you can 
run the following examples directly from an operating system terminal. 

5. Download and install Java. Follow the directions for your specific operating system

https://www.java.com/en/

	 	 17

https://github.com/data-blitz-demos/data-in-motion
https://www.docker.com/products/docker-desktop
https://curl.se/download.html
https://jqlang.github.io/jq/download/
https://code.visualstudio.com/download
https://www.java.com/en/


6. Download and install the Confluent Platform on your machine. Unzip it into a directory of your choice, 
which we will refer to as EXAMPLE_HOME.

https://docs.confluent.io/platform/current/installation/installing_cp/zip-tar.html

Note: If we were using the downloaded distribution as our Kafka runtime, it would be referred to as 
CONFLUENT_HOME. However, in these examples, we will use Docker to run the Confluent Platform 
Kafka ecosystem. Despite this, we still need to run the kafka-avro-console-producer and kafka-avro-
console-consumer located in the bin directory of the installation. This base directory will be referred to 
as EXAMPLE_HOME.

7. If you choose not to download from the above Git Repo then, copy and paste the text from Appendix 1 into 
a file named docker-compose.yml within the EXAMPLE_HOME directory. 

8. Then, at the command prompt type,

docker-compose up -d 

or use the docker-compose up plugin with VSC

The Confluent Platform ecosystem will begin starting once all the Docker images have been 
downloaded. This process may take some time, depending on the speed of your internet connection. 
Once complete, you should see the following response.

 *  Executing task: docker compose -f "docker-compose.yml" up -d --build                                                                                         

                                                                                                                                                                 
[+] Running 9/10                                                                                                                                                 
 ⠏ Network confluent-770_default  Created                                                                                                                        
              4.0s                                                                                                                                               
 ✔ Container zookeeper            Started                                                                                                                        
              1.3s                                                                                                                                               
 ✔ Container broker               Started                                                                                                                        
              1.6s                                                                                                                                               
 ✔ Container schema-registry      Started                                                                                                                        
              1.8s                                                                                                                                               
 ✔ Container rest-proxy           Started                                                                                                                        
              2.6s                                                                                                                                               
 ✔ Container connect              Started                                                                                                                        
              2.5s                                                                                                                                               
 ✔ Container ksqldb-server        Started                                                                                                                        
              2.8s                                                                                                                                               
 ✔ Container ksqldb-cli           Started                                                                                                                        
              3.5s                                                                                                                                               
 ✔ Container control-center       Started                                                                                                                        
              3.5s                                                                                                                                            
✔ Container ksql-datagen         Started                                                                                                                        
              3.5s

	 	 18

https://docs.confluent.io/platform/current/installation/installing_cp/zip-tar.html


Notice we have started the whole Confluent Platform ecosystem. We will only be using the Zookeeper, 
Broker, Schema_Registry, and Control Center in these examples. The primary reason for taking this 
approach is to have access to the Confluent Control Center, a useful UI for viewing and provisioning 
the Kafka deployments.                                                                                                                                                                                                                                                                                                                                                                                                 

9. If you choose not to download from the above Git Repo, then copy and paste the text from Appendix 2 into 
a file named order-transaction. avsc and then save it into the EXAMPLE_HOME directory. This is the 
AVRO schema we will be using for all of the examples.

10. Next, Let's bring up the Confluent Control Center. In your favorite web browser, go to the following URL.

URL: http://localhost:9021/clusters 

The screenshot above shows the Confluent Control Center UI homepage. Sometimes, the Control Center 
might initially display a cluster as "Unhealthy." To resolve this, click on "Overview" followed by "Brokers" 
in the left-hand menu. This will prompt the system to recheck the cluster"s health, typically updating the 
status to "Healthy."

	 	 19

screenshot: 1



11. Register the AVRO schema order-transaction.avsc with the Confluent Schema Registry. This schema will 
be used for all the examples throughout this document.

jq -n --rawfile schema order-transaction.avsc '{schema: $schema}' |   

 curl http://localhost:8081/subjects/order-transactions-value/versions --json @- 

We should get the following response:

{“id”:1}%

This response confirms that we successfully added the order-transaction schema to the Schema Registry, 
with the schema id et to 1. The avro-console-producer will use this id to identify the schema for the 
produced messages, with the schema id prepended to each message. The consumer will use this id to 
retrieve the correct schema from the Schema Registry for validation on the consumer side.

Notice the URL path: /subjects/order-transactions-value/. Since we’re using the default Subject 
naming strategy, TopicNameStrategy, this indicates that we’ve created a Subject named order-
transactions, and the schema will apply to the value schema of the key-value message. More about 
subjects will be covered when we start adding metadata and rule sets to the pipeline. If we also used a 
schema for the message key, it would be specified as order-transactions-key.

12. Start the avro-console-consumer. The kafka-avro-console-consumerr is located in the bin directory of the 
Confluent Platform Distribution, which is located in the EXAMPLE_HOME directory. Start a new terminal 
and at the command prompt:  

./bin/kafka-avro-console-consumer \
--bootstrap-server localhost:9092 \
--from-beginning \
--topic order-transactions \
--property schema.registry.url=http://localhost:8081
 

This command starts the kafka-avro-console-consumer, which will listen to and consume messages 
from the order-transactions topic. It will always read messages from the beginning of the topic upon 
startup. Additionally, it will use the Schema Registry running on `localhost:8081` when a schema id is 
prepended to the message.

We should get the following response:

	 	 20

http://localhost:8081


[2024-10-22 21:19:45,890] INFO KafkaAvroDeserializerConfig values: 
        auto.register.schemas = true
        avro.reflection.allow.null = false
        avro.use.logical.type.converters = false
        basic.auth.credentials.source = URL
        basic.auth.user.info = [hidden]
        bearer.auth.cache.expiry.buffer.seconds = 300
        bearer.auth.client.id = null
        bearer.auth.client.secret = null
        bearer.auth.credentials.source = STATIC_TOKEN
        bearer.auth.custom.provider.class = null
        bearer.auth.identity.pool.id = null
        bearer.auth.issuer.endpoint.url = null
        bearer.auth.logical.cluster = null
        bearer.auth.scope = null
        bearer.auth.scope.claim.name = scope
        bearer.auth.sub.claim.name = sub
        bearer.auth.token = [hidden]
        context.name.strategy = class io.confluent.kafka.serializers.context.NullContextNameStrategy
        http.connect.timeout.ms = 60000
        http.read.timeout.ms = 60000
        id.compatibility.strict = true
        key.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
        latest.cache.size = 1000
        latest.cache.ttl.sec = -1
        latest.compatibility.strict = true
        max.schemas.per.subject = 1000
        normalize.schemas = false
        proxy.host = 
        proxy.port = -1
        rule.actions = []
        rule.executors = []
        rule.service.loader.enable = true
        schema.format = null
        schema.reflection = false
        schema.registry.basic.auth.user.info = [hidden]
        schema.registry.ssl.cipher.suites = null
        schema.registry.ssl.enabled.protocols = [TLSv1.2, TLSv1.3]
        schema.registry.ssl.endpoint.identification.algorithm = https
        schema.registry.ssl.engine.factory.class = null
        schema.registry.ssl.key.password = null
        schema.registry.ssl.keymanager.algorithm = SunX509
        schema.registry.ssl.keystore.certificate.chain = null
        schema.registry.ssl.keystore.key = null
        schema.registry.ssl.keystore.location = null
        schema.registry.ssl.keystore.password = null
        schema.registry.ssl.keystore.type = JKS
        schema.registry.ssl.protocol = TLSv1.3
        schema.registry.ssl.provider = null
        schema.registry.ssl.secure.random.implementation = null
        schema.registry.ssl.trustmanager.algorithm = PKIX
        schema.registry.ssl.truststore.certificates = null
        schema.registry.ssl.truststore.location = null
        schema.registry.ssl.truststore.password = null
        schema.registry.ssl.truststore.type = JKS
        schema.registry.url = [http://localhost:8081]
        specific.avro.key.type = null
        specific.avro.reader = false
        specific.avro.value.type = null

	 	 21



        use.latest.version = false
        use.latest.with.metadata = null
        use.schema.id = -1
        value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)

13. Start the kafka-avro-console-producer, which can be found in the `bin` directory of the Confluent 
Platform distribution within the `EXAMPLE_HOME` directory. Open a new terminal window and, at the 
command prompt, enter the following

./bin/kafka-avro-console-producer \ 
  --topic order-transactions \ 
  --broker-list localhost:9092 \ 
  --property schema.registry.url=http://localhost:8081 \ 
  --property value.serializer=io.confluent.kafka.serializers.KafkaAvroSerializer \   
 --property value.schema.id=1

This command starts the kafka-avro-console-producer, which will write/produce messages to the 
order-transactions topic. Once started, it will wait for messages to be input in the terminal. The 
producer will use the Schema Registry running on localhost:8081. Since this is a "shift left" pipeline 
processing model, the produced messages must conform to the `order-transaction` schema or schema 
id 1 at the source level. This approach guards against bad data being propagated to downstream 
consumers.

We should get the following response:

[2024-10-22 21:35:57,044] INFO KafkaAvroSerializerConfig values: 
        auto.register.schemas = true

        avro.reflection.allow.null = false
        avro.remove.java.properties = false
        avro.use.logical.type.converters = false
        basic.auth.credentials.source = URL
        basic.auth.user.info = [hidden]
        bearer.auth.cache.expiry.buffer.seconds = 300
        bearer.auth.client.id = null
        bearer.auth.client.secret = null
        bearer.auth.credentials.source = STATIC_TOKEN
        bearer.auth.custom.provider.class = null
        bearer.auth.identity.pool.id = null
        bearer.auth.issuer.endpoint.url = null
        bearer.auth.logical.cluster = null
        bearer.auth.scope = null
        bearer.auth.scope.claim.name = scope
        bearer.auth.sub.claim.name = sub
        bearer.auth.token = [hidden]
        context.name.strategy = class io.confluent.kafka.serializers.context.NullContextNameStrategy
        http.connect.timeout.ms = 60000
        http.read.timeout.ms = 60000
        id.compatibility.strict = true

	 	 22



        key.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
        latest.cache.size = 1000
        latest.cache.ttl.sec = -1
        latest.compatibility.strict = true
        max.schemas.per.subject = 1000
        normalize.schemas = false
        proxy.host = 
        proxy.port = -1
        rule.actions = []
        rule.executors = []
        rule.service.loader.enable = true
        schema.format = null
        schema.reflection = false
        schema.registry.basic.auth.user.info = [hidden]
        schema.registry.ssl.cipher.suites = null
        schema.registry.ssl.enabled.protocols = [TLSv1.2, TLSv1.3]
        schema.registry.ssl.endpoint.identification.algorithm = https
        schema.registry.ssl.engine.factory.class = null
        schema.registry.ssl.key.password = null
        schema.registry.ssl.keymanager.algorithm = SunX509
        schema.registry.ssl.keystore.certificate.chain = null
        schema.registry.ssl.keystore.key = null
        schema.registry.ssl.keystore.location = null
        schema.registry.ssl.keystore.password = null
        schema.registry.ssl.keystore.type = JKS
        schema.registry.ssl.protocol = TLSv1.3
        schema.registry.ssl.provider = null
        schema.registry.ssl.secure.random.implementation = null
        schema.registry.ssl.trustmanager.algorithm = PKIX
        schema.registry.ssl.truststore.certificates = null
        schema.registry.ssl.truststore.location = null
        schema.registry.ssl.truststore.password = null
        schema.registry.ssl.truststore.type = JKS
        schema.registry.url = [http://localhost:8081]
        use.latest.version = false
        use.latest.with.metadata = null
        use.schema.id = -1
        value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroSerializerConfig:372)

14. Let’s produce some messages. In the terminal running in the EXAMPL_HOME directory, running the 
kafka-avro-console-producer. Copy and paste the following JSON object after the previous response 
type/paste:.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34,   
"productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505,   
"firstName": "Amanda", "lastName": "Murray","email":"amanda.murray@yahoo.com" ,"gender": "Female",   
"age": 67, "address": "9900 Curtis Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744",   
"creditCardNumberType": "AMEX", "creditCardNumber": "5541123132728247"}  

	 	 23



12. Let's check the kafka-avro-console-consumer. In the terminal running the kafka-avro-console-consumer 
we should see the following:

   

  (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)
{"transactionId":"1f04e109-73a8-495c-
a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless steel garden trowel with 
ergonomic 
handle.","timestamp":1729184505,"firstName":"Amanda","lastName":"Murray","email":"amanda.murray@yahoo.com","gender"
:"Female","age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland","state":"VA","zipCode":"41744","creditCardNumberType":"AMEX","creditCardNumber":"5541123132728247"}

What just happened? We built a "shift left" pipeline using the Confluent Platform. First, we created an 
AVRO message schema and registered it with the Schema Registry. Then, we produced schema-
compliant messages, which were written to the order-transactions topic. The consumer read the 
messages and validated them against the schema of Id 1, and since they passed the schema check, they 
were successfully written to stdout.

13. Let’s check in with the Confluent Control Center. Start your favorite browser and go to link,

http://localhost:9021/clusters/overview

	 	 24



Next, click on the Topics link on the left. This will take you to the Topics page. 

Notice the Topic order-transactions we created and used in our first example. Next, Let's drill into the 
Topic order-transactions. Click on the orders-transactions topic.

Noticed the top of the Messages and Schema links. Click on the Messages link. Then, type 0 in the top 
left text box. This will allow us to see messages in partition 0.

Notice the message the producer sent to the consumer is present. This is a good tool to observe 
messages for correctness. Next, go back to the previous page, and click the schema link.

	 	 25

Cluster overview->Topics



Notice the Schema we entered, and the id is set to 1

The example above demonstrates our initial pipeline with governance for data in motion, ensuring data 
adheres to a predefined schema. Schema validation is performed on the producer side, near the data 
source, an approach referred to as a "shift left" pipeline. Validating data as early as possible prevents 
bad data from propagating through the system. If the schema validation fails, the producer halts 
processing. While this behavior is technically correct, it may not be optimal for production 

	 	 26

Cluster overview->Topics->order-transactions-schema



environments. In the following examples, we'll explore more practical solutions by integrating rules 
into the pipeline, which will be included in the Subject.

14. Next, let's introduce some invalid data to test the schema validation. We'll ensure that this data is flagged as 
invalid because it does not conform to the defined schema. In the kafka-avro-console-producer terminal, 
paste the following invalid data:

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": 4304360364601, "price": 874.34, 
"productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": 
"Sam", "lastName": "Murray","email":"sam.murray@yahoo.com" ,"gender": "Male", "age": 12, "address": "9900 
Curtis Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": "Visa", 
"creditCardNumber": "5541123132728247"}

Notice the productId field is not a string but instead is a number. This is enough to violate the schema. We should get the 
following response.

{"name":"creditCardNumberType","type":"string"},{"name":"creditCardNumber","type":"string"}]}

        at io.confluent.kafka.formatter.AvroMessageReader.readFrom(AvroMessageReader.java:130)

        at io.confluent.kafka.formatter.SchemaMessageReader.readMessage(SchemaMessageReader.java:405)

        at kafka.tools.ConsoleProducer$$anon$1$$anon$2.hasNext(ConsoleProducer.scala:67)

        at kafka.tools.ConsoleProducer$.loopReader(ConsoleProducer.scala:90)

        at kafka.tools.ConsoleProducer$.main(ConsoleProducer.scala:99)

        at kafka.tools.ConsoleProducer.main(ConsoleProducer.scala)

Caused by: org.apache.avro.AvroTypeException: Expected string. Got VALUE_NUMBER_INT

The kafka-avro-console-producer faulted (i.e. crashed) returning the above exception. Let’s check the Control Center to make 
sure the bad message was not produced to the topic order-transactions.

	 	 27

Cluster overview->Topics->order-transactions-messages



We noticed that there is only one message in the topic order–transactions. This was the initial message we 
wrote. The second message, which violated the schema, did not get written to the topic.

Example 2 Data Quality Governance:

In the previous example, we demonstrated how to send Avro messages to a specified topic with the Schema 
Registry ensuring schema compliance. Now, we’ll enhance the pipeline by incorporating Data Quality 
Governance, which evaluates data values and checks their semantic correctness. Since Avro schemas alone do 
not natively enforce value constraints for individual fields, we’ll leverage Confluent Platform Data Contracts 
to implement these validations.

Continuing from the earlier example, we’ll work with the order-transaction schema and introduce Data Quality 
Rules into the Subject's value schema, representing the pipeline's data. Confluent Platform Data Contracts allow 
us to define Data Quality Rules using either the Google Common Expression Language (CEL) or JSONata. 
Each of these DSLs provides a way to specify constraints. In this example, we’ll use CEL, which is generally 
faster—an important consideration since every message in the topic must undergo validation. Rulesets are 
associated with a specific subject and can target either the value schema or the key schema. Here, we’ll focus on 
the value schema.

For the order-transaction subject, we’ll apply rules to the order-transaction-value schema. In our first Data 
Quality Rule example, every message written to the order-transaction topic must comply with the following 
rule: the age of an individual must be greater than 18. The rule is defined as follows:

{
    "ruleSet": {
        "domainRules": [
            {
                "name": "checkForMinors",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.age > 17"
            }
        ]
    }
}

If you prefer not to download the JSON object from the Git repository, you can copy and paste it into a file 
named order-transaction-ruleSet-simple.json and save it in the EXAMPLE_HOME directory. Here's a 
breakdown of the structure: the ruleSet object contains an array called domainRules, where each element 
represents an individual rule evaluated in sequence. In this case, the rule set contains only one rule.

	 	 28

https://cel.dev
https://jsonata.org


1. Just for consistency, let's bring down Confluent Platform Kafka Ecosyse. In the EXAMPLE_HOME 
directory, at the command prompt type,

docker-compose down 

or use the docker-compose down plugin with VSC

Expected Response:

 *  Executing task: docker compose -f "docker-compose.yml" down                                    
                                                                                                   
[+] Running 10/10                                                                                  
 ✔ Container control-center       Removed                                                     2.0s 
 ✔ Container ksql-datagen         Removed                                                    10.3s 
 ✔ Container rest-proxy           Removed                                                     1.9s 
 ✔ Container ksqldb-cli           Removed                                                     1.0s 
 ✔ Container ksqldb-server        Removed                                                     1.3s 
 ✔ Container connect              Removed                                                     2.5s 
 ✔ Container schema-registry      Removed                                                     1.2s 
 ✔ Container broker               Removed                                                    10.3s 
 ✔ Container zookeeper            Removed                                                     0.6s 
 ✔ Network confluent-770_default  Removed                                                     0.1s

Keep in mind that we are not using volumes with docker-compose. This implies that all Subjects, 
Schema, and RuleSets are deleted when bringing down docker-compose. 

2. Again, in the EXAMPL_HOME directory, at the prompt,

docker-compose up 

or use the docker-compose up plugin with VSC

Expected Response:

 *  Executing task: docker compose -f "docker-compose.yml" up -d --build 

[+] Running 9/10
 ⠋ Network confluent-770_default  Created                                                     3.0s 
 ✔ Container zookeeper            Started                                                     0.9s 
 ✔ Container broker               Started                                                     1.1s 
 ✔ Container schema-registry      Started                                                     1.4s 
 ✔ Container connect              Started                                                     1.8s 
 ✔ Container rest-proxy           Started                                                     1.7s 
 ✔ Container ksqldb-server        Started                                                     2.0s 
 ✔ Container ksqldb-cli           Started                                                     2.6s 
 ✔ Container ksql-datagen         Started                                                     2.5s 
 ✔ Container control-center       Started   

	 	 29



2. Once again, in a new terminal, let’s add the schema order-transaction.avsc to the Schema Registry. Create 
a new terminal type:

jq -n --rawfile schema order-transaction.avsc '{schema: $schema}' | 
  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

We should get the following response:

{“id”:1}

3. Next, let’s add the RuleSet to the Subject’s value schema, type:

  curl http://localhost:8081/subjects/order-transactions-value/versions \

  --json @order-transaction-ruleSet-simple.json

We should get the following response:

{"id":2,"version":2,"ruleSet":{"domainRules":
[{"name":"checkForMinors","kind":"CONDITION","mode":"WRITE","type":"CEL","expr":"message.age > 
17","disabled":false}]},"schema":"{\"type\":\"record\",\"name\":\"transaction\",\"namespace\":\"demo.data.contract.com\",\"fields\":[{\"name\":
\"transactionId\",\"type\":\"string\"},{\"name\":\"productId\",\"type\":\"string\"},{\"name\":\"price\",\"type\":\"double\"},{\"name\":
\"productDescripton\",\"type\":\"string\"},{\"name\":\"timestamp\",\"type\":\"long\"},{\"name\":\"firstName\",\"type\":\"string\"},{\"name\":
\"lastName\",\"type\":\"string\"},{\"name\":\"email\",\"type\":\"string\"},{\"name\":\"gender\",\"type\":\"string\"},{\"name\":\"age\",\"type\":
\"int\"},{\"name\":\"address\",\"type\":\"string\"},{\"name\":\"city\",\"type\":\"string\"},{\"name\":\"state\",\"type\":\"string\"},{\"name\":
\"zipCode\",\"type\":\"string\"},{\"name\":\"creditCardNumberType\",\"type\":\"string\"},{\"name\":\"creditCardNumber\",\"type\":\"string\"}]}"}% 

Notice in the top left of the response “id”:2. By adding RuleSet to the Subject value schema, we 
versioned the value schema by 1. The schema version is now equal to 2.

4. Once again, start the kafka-arvo-console-consumer. Start a new terminal at the prompt type:,

./bin/kafka-avro-console-consumer \
--bootstrap-server localhost:9092 \
--from-beginning --topic order-transactions \
--property schema.registry.url=http://localhost:8081 

Expected response:

   use.latest.with.metadata = null

	 	 30



   use.schema.id = -1
  value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)

The consumer blocks until a message is available on the topic order-transactions 

5. Next, let’s start the kafka-avro-console-producer. Create a new terminal and type:

./bin/kafka-avro-console-producer \
  --topic order-transactions \
  --broker-list localhost:9092 \
  --property value.schema.id=2 \
  --property bootstrap.servers=localhost:9092 

Expected response:

        use.latest.version = false
        use.latest.with.metadata = null
        use.schema.id = -1
        value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroSerializerConfig:372)

The Producer blocks until we paste data to the bottom of the terminal window

6. First, let’s add some good data to the kafka-avro-console-producer. Cut and paste the following JSON object 
to the bottom of  kafka-avro-console-producer terminal :

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34, 
"productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": 
"Amanda", "lastName": "Murray","email":"amanda.murray@yahoo.com" ,"gender": "Female", "age": 67, 
"address": "9900 Curtis Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", 
"creditCardNumberType": "Mastercard", "creditCardNumber": "2541123132728249"}

Expected response: Nothing

7. Now, switch to the kafka-avro-console-consumer terminal. You should see the following,

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless steel 
garden trowel with ergonomic 
handle.","timestamp":1729184505,"firstName":"Amanda","lastName":"Murray","email":"amanda.murray@yahoo.com","gender":"Female","age
":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland”,"state":"VA","zipCode":"41744","creditCardNumberType":"Mastercard","creditCardNumber":"2541123132728249"}

	 	 31



As we can see, it worked. The kafka-arvo-console-consumer received the message from the producer. 

This implies that it first passed a schema check, and then passed the rule that the age field must be 
greater than 1 Check what happened with Control Center,

As we can see, there is only one message on the topic order-transactions.

8. Next, Let's try to write some bad data. The age will be set to 13. Go back to the producer terminal and paste 
the following JSON object

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 87.325, 
"productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": 
"Doug", "lastName": "Smith","email":"doug.smith@yahoo.com" ,"gender": "Male", "age": 13, "address": "9900 
Curtis Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": 
"Visa", "creditCardNumber": "5541123132728247"}

We should have the following response:

Caused by: org.apache.kafka.common.errors.SerializationException: Rule failed: checkForMinors
        at io.confluent.kafka.schemaregistry.rules.ErrorAction.run(ErrorAction.java:32)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.runAction(AbstractKafkaSchemaSerDe.java:834)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:732)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:660)
        at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:144)
        ... 6 more

Caused by: io.confluent.kafka.schemaregistry.rules.RuleConditionException: Expr failed: 'message.age > 17'
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:718)
        ... 8 more

	 	 32

Cluster overview->Topics->order-transactions-messages



The kafka-avro-console-producer encountered an error, throwing an exception due to the rule 
expression "message.age > 17" failing. This behavior is expected for the kafka-avro-console-
producer, as it is designed primarily for testing and demonstrations. In a production environment, a 
producer would typically log the exception and continue processing.

9.  Let's check in again Control Center,

As we can see, the bad message was not written to the topic order-transactions. The only message 
present is the good message sent earlier.

	 	 33

Cluster overview->Topics->order-transactions-messages



11. Many times, returning an exception and logging it is not enough. This is a note-worthy condition that 
may occur often. For this scenario, we may want to use what’s known as a dead letter queue (DLQ).  
With the Confluent Platform, a dead letter queue is a separate topic. When a message fails to pass 
subject-driven constraints, it is written to a separate topic defined in the rule. Below is an example of 
using a dead letter Q with our previous example.

{
    "ruleSet": {
        "domainRules": [
            {
                "name": "checkForMinors",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.age > 17",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            }
        ]
    }
}
In the above rule, we have added the configuration for a dead letter queue. If the rule 
“checkForMinors" fails the logic in the “expr”, the message will be written to the topic order-
transactions-dlq. 

6. If you prefer not to download the JSON object from the Git repository, cut and paste the above JSON object 
into the file order-transaction-rule-set-dlq.json located in the EXAMPLE_HOME directory.

12.  Next, Let's update the RuleSet for the Subject value schema, order-transactions-value the above ruleSet. 
Start a new terminal and enter:

  curl http://localhost:8081/subjects/order-transactions-value/versions \

  --json @order-transaction-ruleSet-simple-dlq.json

13. Return to the faulted kafka-avro-console-producer terminal and rerun the producer and type: 

	 	 34



./bin/kafka-avro-console-producer \
  --topic order-transactions \
  --broker-list localhost:9092 \
  --property value.schema.id=2 \
  --property bootstrap.servers=localhost:9092 \
  --property dlq.auto.flush=true

14. Next, Let's add the bad data. Cut and paste the following JSON object to the bottom of the running producer 
terminal paste:

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 87.325, 
"productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": 
"Doug", "lastName": "Smith","email":"doug.smith@yahoo.com" ,"gender": "Male", "age": 13, "address": "9900 
Curtis Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": 
"Visa", "creditCardNumber": "5541123132728247"}

We should get the following response

Caused by: org.apache.kafka.common.errors.SerializationException: Rule failed: checkForMinors
        at io.confluent.kafka.schemaregistry.rules.DlqAction.run(DlqAction.java:139)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.runAction(AbstractKafkaSchemaSerDe.java:834)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:732)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:660)
        at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:144)
        ... 6 more
Caused by: io.confluent.kafka.schemaregistry.rules.RuleConditionException: Expr failed: 'message.age > 17'
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:718)
        ... 8 more

Notice we got the same results without the DLQ. 

	 	 35



15. Next, Let's check in with the Control Center.

goto URL: http://localhost:9021/clusters Topics->Topics

A new topic named order-transactions-dlq was automatically created because the broker has auto-
creation of topics enabled. This setting is not recommended for production systems. Next, let's 
examine the `order-transactions` topic to verify that the erroneous message was not written.

	 	 36

Cluster overview->Topics

http://localhost:9021/clusters


Observe that there is only one message present, the original valid message. Now, let's delve into the 
order-transactions-dlq topic.

	 	 37

Cluster overview->Topics->order-transactions-messages 0

Cluster overview->Topics->order-transactionsdlq—>messages 0



As we can see, the bad message value was written to the DLQ. Next, we will examine the header of the 
message to determine the reason the message was rejected.

Notice the last entry in the array, _rule.exception, with the string value: "Expr failed "message.age > 

17". Dead letter queues play a critical role in managing data governance in motion. Organizations 
should periodically review the dead letter queue to ensure proper oversight. The Confluent Platform 
Enterprise Edition offers robust support for implementing semantic governance, enabling the 
enforcement of message structure and data quality rules. Next, we will explore a more complex use 
case involving data quality, applying advanced rules through rule-based expressions. 

	 	 38

Cluster overview->Topics->order-transactionsdlq—>header 0



Example 3 Complex Data Quality Governance:

In this example, we will provide semantic governance around the use of credit cards. We will use the order–
transaction.avsc schema as before. We will force the data to adhere to the following constraints.

• We will allow customers who are 18 years old or older

• We will only support Visa, Mastercard, or AMEX credit cards

• Visa: The leading digit of the credit card number must be 5

• Visa: The card number must be 16 digits long

• Mastercard: The leading digit of the credit card number must be 2

• Mastercard: The card number must be 16 digits long 

• AMEX: The leading digit of the credit card number must be 3

• AMEX: The card number must be 15 digits long

1. First, Let's restart docker-compose. This will delete everything done thus far and initialize the 
environment at the command prompt type,

docker-compose down 

or use the docker-compose down plugin with VSC

docker-compose up -d 

or use the docker-compose up plugin with VSC

2. Once again, register the AVRO schema order transaction. avsc with the Confluent Schema 
Registry.

jq -n --rawfile schema order-transaction.avsc '{schema: $schema}' | 

  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

3. If you prefer not to download the JSON object from the Git repository, copy and paste the JSON 
object in Appendix 3 into a file called order-transaction-ruleSet-complex.json into the 

	 	 39



EXAMPLE_HOME directory. In this example, we will use the Google Common Expression 
Language CEL to implement the RuleSet

4. Add the following RuleSet to the Subjects order-transaction-value, first create a new terminal, 
issue the following curl command,

 curl http://localhost:8081/subjects/order-transactions-value/versions \
  --json @order-transaction-ruleSet-complex.json

5. Next, let’s start kafka-avro-console-producer and kafka-arvo-console-consumer 

In terminal already open run the following,

./bin/kafka-avro-console-producer \

  --topic order-transactions \

  --broker-list localhost:9092 \

  --property value.schema.id=2 \

  --property bootstrap.servers=localhost:9092 \

  --property dlq.auto.flush=true 

In a new terminal run the following,

./bin/kafka-avro-console-consumer \

--bootstrap-server localhost:9092 \

--from-beginning --topic order-transactions \

--property schema.registry.url=http://localhost:8081 

6. Let's review the rules associated with the use case. Open the JSON object contented in the file 
order-transaction-ruleSet-complex.json in the EXAMPL_HOME directory

{

	 	 40

https://cel.dev
https://cel.dev


    "ruleSet": {
        "domainRules": [
            {
                "name": "customers_under_age_of_18_not_supported",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.age >= 18",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "unsupported_credit_card_type",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType in [\"AMEX\", \"Visa\", \"Mastercard\"]",  
                "params": {
                    "dlq.topic": "order-transactions--dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "visa_card_number_is_not_16_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? size(message.creditCardNumber) == 16:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "visa_card_number_first_digit_is_not_5",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? message.creditCardNumber.matches(\"^5[0-9]{15}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },

              
]
  

The domainRules array contains an ordered list of rules, each of which is evaluated 
separately. The first rule implements the logic from the previous example: all order 
transactions must be initiated by an adult aged 18 or older. If this rule fails, the resulting 
message will be sent to the dead-letter queue (DLQ).

	 	 41



The next rule verifies the credit card type. Only Visa, MasterCard, or AMEX are accepted. If a 
transaction includes an unsupported card type, the rule will fail, and the message will be sent 
to the same DLQ. While it's possible to have separate dead-letter queues for each rule, in this 
example, a single DLQ suffices. As demonstrated earlier, the header of the message sent to the 
DLQ includes the failure reason and additional information needed to debug the issue.

The subsequent two rules apply specifically to Visa credit card types. The first ensures that the 
credit card number is the correct length for Visa cards, 16 digits. If the number is not 16 digits 
long, this triggers an error. The next rule checks whether the leading digit of the credit card 
number is five. If the leading digit is not five, and the card type is Visa, this is also considered 
an error. All errors are routed to the same DLQ.

The remainder of the ruleset applies similar logic for MasterCard and AMEX card types. Note 
that additional rules can be appended to the domainRules array, which represents a sequential 
chain of rules applied to each record written to the order-transactions topic. 

7. Next, we will test these rules with a set of messages.First, let's send an order-transaction for a Visa 
card that meets all the requirements. Specifically, the credit card number starts with the digit 5 and 
is exactly 16 characters long. Copy and paste the following JSON object to the terminal running the 
kafka-avro-console-producer.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 
874.34, "productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 
1729184505, "firstName": "Sam", "lastName": "Murray","email":"sam.murray@yahoo.com" ,"gender": 
"male", "age": 54, "address": "9900 Curtis Field Suite 242", "city": "West Katieland", "state": "VA", 
"zipCode": "41744", "creditCardNumberType": "Visa", "creditCardNumber": "5541123132728247"}

8. Then let’s look at the terminal running the kafka-avro-console-consumer. We should see the 
following,

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"firstName":"Sam","lastName":"Murray","email":"sam.murray@yahoo.com","gender":"male","age":54
,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland","state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

As we can see, the message successfully passed all the rule constraints. The age was greater than 18, 
the credit card type was Visa, the credit card number was 16 digits long, and it started with the digit 5.

	 	 42



9. Next, we will test these rules with an invalid message. Specifically, we'll send a Visa transaction 
with a credit card number that starts with the digit 8, which violates the rule expecting it to start 
with a 5. Copy and paste the following JSON object into the terminal running the kafka-avro-
console-producer.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34, "productDescripton": 
"Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": "Sam", "lastName": 
"Murray","email":"sam.murray@yahoo.com" ,"gender": "male", "age": 54, "address": "9900 Curtis Field Suite 242", "city": "West 
Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": "Visa", "creditCardNumber": "8541123132728247"}Notice that 
the kafka-avro-console-producer failed and threw an exception. As we can see, the rule enforcing that the first digit of a Visa card number must be 
5 was violated. Consequently, the message did not pass validation and was not sent to the kafka-avro-console-consumer.

Caused by: org.apache.kafka.common.errors.SerializationException: Rule failed: visa_card_number_first_digit_is_not_5
        at io.confluent.kafka.schemaregistry.rules.DlqAction.run(DlqAction.java:139)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.runAction(AbstractKafkaSchemaSerDe.java:834)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:732)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:660)
        at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:144)
        ... 6 more
Caused by: io.confluent.kafka.schemaregistry.rules.RuleConditionException: Expr failed: 'message.creditCardNumberType == "Visa" ? 
message.creditCardNumber.matches("^5[0-9]{15}$"):true'
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:718)

10. Let’s check the terminal running the kafka-avro-console-consumer. As we can see, nothing 
happened, the faulty message was filtered out and not delivered to the consumer. Now, let’s open 
Control Center and view the dead-letter queue (DLQ) topic.

	 	 43

Cluster overview->Topics->order-transactions-dlq—>0—>messages—>Value 



The faulty message is written to the dead-letter queue (DLQ) exactly as it was sent. Notice that the first 
digit of the credit card number is 8. Next, let’s examine the header for this message.

As shown in the screenshot above, the header contains metadata about the failed document. The rule 
that failed is identified by the first object in the array, where _rule.name has a stringValue of 
“visa_card_number_digit_is_not_5".

11. Next, we will test these rules with other invalid message. Specifically, we'll send a Visa transaction 
with a credit card number that is not 16 digits long, which violates the rule expecting it to be 16 
digits long. Copy and paste the following JSON object into the terminal running the kafka-avro-
console-producer.

Cluster overview->Topics->order-transactions-dlq—>0—>messages—>Header 

	 	 44



{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 

874.34, "productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 

1729184505, "firstName": "Amanda", "lastName": 

"Murray","email":"amanda.murray@yahoo.com" ,"gender": "Female", "age": 67, "address": "9900 Curtis 

Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": 

"Visa", "creditCardNumber": “554112313272824”}

We get the following response,

Caused by: org.apache.kafka.common.errors.SerializationException: Rule failed: visa_card_number_is_not_16_digits_long
        at io.confluent.kafka.schemaregistry.rules.DlqAction.run(DlqAction.java:139)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.runAction(AbstractKafkaSchemaSerDe.java:834)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:732)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:660)
        at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:144)
        ... 6 more

Caused by: io.confluent.kafka.schemaregistry.rules.RuleConditionException: Expr failed: 'message.creditCardNumberType == 
"Visa" ? size(message.creditCardNumber) == 16:true'
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:718)
        ... 8 more

Lets check the dead letter queue (DLQ),

The new faulty message has been added to the dead letter queue, as observed.\

	 	 45

Title



12. What happens if more than one rule fails. How is this accounted for? The next input object will 
have the wrong length for the credit card number and it will not start with 5. Copy and paste the 
following JSON object into the terminal running the kafka-avro-console-producer.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 
874.34, "productDescripton": "Stainless steel garden trowel with ergonomic handle.", "timestamp": 
1729184505, "firstName": "Amanda", "lastName": 
"Murray","email":"amanda.murray@yahoo.com" ,"gender": "Female", "age": 67, "address": "9900 Curtis 
Field Suite 242", "city": "West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": 
"Visa", "creditCardNumber": “854112313272824"}

We get the following results,

Caused by: org.apache.kafka.common.errors.SerializationException: Rule failed: visa_card_number_is_not_16_digits_long
        at io.confluent.kafka.schemaregistry.rules.DlqAction.run(DlqAction.java:139)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.runAction(AbstractKafkaSchemaSerDe.java:834)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:732)
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:660)
        at io.confluent.kafka.serializers.AbstractKafkaAvroSerializer.serializeImpl(AbstractKafkaAvroSerializer.java:144)
        ... 6 more
Caused by: io.confluent.kafka.schemaregistry.rules.RuleConditionException: Expr failed: 'message.creditCardNumberType == "Visa" ? 
size(message.creditCardNumber) == 16:true'
        at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.executeRules(AbstractKafkaSchemaSerDe.java:718)

It seems that only the first failing rule is reported in the exception stack trace. Let's examine 
the dead letter queue and the message header.

	 	 46



Control Center produces the same results: only the first failing rule is reported. This behavior 
makes sense because, in the rule set, the check for the credit card number length precedes the 
check for whether the credit card number starts with 5.

Example 4: Data Transformation Governance:

As mentioned earlier, data transformation is a critical use case. Using a "shift left" approach, we aim to apply 
data transformations as early in the pipeline as possible. This example demonstrates how to govern data 
transformations using the Confluent Platform Data Contracts framework. Specifically, we will introduce a 
schema migration that forces a breaking change. For this demonstration, we will use AVRO as the messaging 
format for streaming data.

The Confluent Platform Data Contracts framework supports breaking schema changes by partitioning schema 
versions into compatibility groups. This capability is essential for ensuring that both legacy and updated 
consumers can process messages correctly, regardless of schema changes.

To achieve this, we use migration rules implemented with JSONata, a lightweight query and transformation 
language for JSON data. These migration rules enable seamless schema compatibility across different versions, 
ensuring smooth communication between producers and consumers even when schema-breaking changes 
occur..

In this case, two primary rules are defined: the UPGRADE rule and the DOWNGRADE rule. The UPGRADE 
rule allows new consumers, who expect the current schema, to read messages from older schema versions. 
Conversely, the DOWNGRADE rule allows older consumers, who expect the previous schema, to read 
messages that use the current schema.

If the system is planning to upgrade all consumers to the latest schema version, the DOWNGRADE rule can be 
omitted, as there will no longer be a need to support the older schema.

In each migration rule, we leverage the JSONata function called $sift(), which allows for the transformation of 
fields within the data. The $sift() function removes a field by its name and enables the addition of a new field 
with a different name. This approach ensures that schema changes, such as removing attributes or renaming 
fields, scan be handled dynamically, allowing both old and new consumers to process the messages without 
disruption.

	 	 47



By using migration rules in this way, data transformation governance ensures smooth compatibility across 
schema versions, even when breaking changes occur. This is a powerful feature for managing data evolution 
while maintaining flexibility and ensuring uninterrupted data flows for both producers and consumers. Below is 
a simple form of Migration Rules discussed.

        "migrationRules": [
            {
              "name": "changeFirstNameToFirst_name",
              "kind": "TRANSFORM",
              "type": "JSONATA",
              "mode": "UPGRADE",
              "expr": "$merge([$sift($, function($v, $k) {$k != "firstName"}), {"first_name": $."firstName"}])"
            },
            {
              "name": "changeFirst_nameToFirstName",
              "kind": "TRANSFORM",
              "type": "JSONATA",
              "mode": "DOWNGRADE",
              "expr": "$merge([$sift($, function($v, $k) {$k != "first_name"}), {"firstName": $."first_name"}])"
            }
        ]

In this data transformation governance setup, the discussed migration rules will be added to the existing rule set 
within the data contract framework. As outlined, we have two primary rules to manage schema evolution: a 
UPGRADE rule for transforming older schema messages to be readable by consumers using the latest schema, 
and a DOWNGRADE rule for making newer schema messages accessible to consumers expecting an older 
schema.

The application of these rules is determined by a  compatibility group attribute in the metadata. This attribute 
identifies the schema version, allowing the system to determine whether to apply the UPGRADE or 
DOWNGRADE rule based on the compatibility needs of each consumer. By embedding the compatibility group 
in the metadata, we achieve a flexible, version-aware transformation process, which can dynamically adjust 
based on the specific schema being consumed.

An example of the metadata controlling the major version will look like this

{
  "metadata": {
    “compatibility_group": 2
  }
}.

By incorporating JSONata into these migration rules, we enable precise, rule-based control over data 
transformation, ensuring consistent compatibility across versions and maintaining data integrity as schema 
evolution continues.

	 	 48



Below is a diagram illustrating this example. It features two separate Kafka producers. The first producer sends 
messages using the original schema, `order-transactions`, while the second sends messages using the new 
schema, `order-messages-migration`. Each schema belongs to a distinct compatibility group. The key difference 
between these schemas is the naming convention for a field: the original schema uses `firstName`, while the 
new schema uses `first_name`. This setup demonstrates a scenario where downstream consumers include two 
types, one expecting the original schema and the other expecting the new schema. As noted, the difference 
between these schemas introduces a breaking change to the pipeline. Migration rules resolve this issue, enabling 
seamless communication across both data sources.

Next, two consumers are initiated: one expects messages conforming to the old schema (compatibility group 1) 
and is represented in light blue, while the other expects messages conforming to the new schema (compatibility 
group 2) and is represented in red. 

The top Kafka producer (light blue) sends message 1 using the original schema. This message is written to the 
`order-transactions` topic. Both the existing data quality rules and the new migration rules are applied. As a 
result, the top consumer (light blue) receives the message in its original schema format, as expected. 
Simultaneously, the message is transformed to conform to the new schema and delivered to the second 
consumer (red), ensuring compatibility.

Next, the bottom Kafka producer (red) sends message 2 using the new schema. This message is translated to the 
original schema format and sent to the top consumer (light blue), meeting its expectations for the old schema. At 
the same time, message 2 is delivered to the bottom consumer (red) in its original form, conforming to the new 
schema.

Let's run the example:

1. First, Let's restart docker-compose. This will delete everything done thus far and initialize the 
environment.

	 	 49



2. Next, Let's run example 3 over again. This will represent the existing pipeline. We will later add the 
migration rules to the rule set. We will briefly go over this sequence of actions.

In a new terminal:

jq -n --rawfile schema order-transaction.avsc "{schema: $schema}" | 
  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

 curl http://localhost:8081/subjects/order-transactions-value/versions \
  --json @order-transaction-ruleSet-complex.json

./bin/kafka-avro-console-producer \
  --topic order-transactions \
  --broker-list localhost:9092 \
  --property value.schema.id=2 \
  --property bootstrap.servers=localhost:9092 \
  --property dlq.auto.flush=true

In a new terminal:

./bin/kafka-avro-console-consumer \
--bootstrap-server localhost:9092 \
--from-beginning --topic order-transactions \
--property schema.registry.url=http://localhost:8081

In the first terminal (i.e. producer terminal), send the following valid JSON Document.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34, "productDescripton": 
"Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": "Amanda", "lastName": 
"Murray","email":"amanda.murray@yahoo.com" ,"gender": "Female", "age": 67, "address": "9900 Curtis Field Suite 242", "city": 
"West Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": "Visa", "creditCardNumber": 
“5541123132728247"}

Then in the consumer terminal, we should see the following.

 (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)
{"transactionId":"1f04e109-73a8-495c-
a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless steel garden trowel with 
ergonomic 
handle.","timestamp":1729184505,"firstName":"Amanda","lastName":"Murray","email":"amanda.murray@yahoo.com","gender":
"Female","age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland”,"state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

Notice everything is working as before.

3. Next, Let's create a breaking change to the order-transaction-value schema. Copy and paste the 
JSON document in Appendix 4 into a file called order-transaction-value-breaking-change in the 
EXAMPLE_HOME directory.

	 	 50



Notice that we removed the field first name and replaced it with a field first_name. This is a 
breaking change. None of the schema of migration change methods will support this.

4. Create a new Terminal and enter the following command.

jq -n --rawfile schema order-transaction-breaking-change.avsc "{schema: $schema}" | 
  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

And we get the following response.

{"error_code":409,"message":"Schema being registered is incompatible with an earlier schema for subject \"order-transactions-value\", details: 
[{errorType:"READER_FIELD_MISSING_DEFAULT_VALUE", description:"The field "first_name" at path "/fields/5" in the new schema has 
no default value and is missing in the old schema", additionalInfo:"first_name"}, {oldSchemaVersion: 2}, {oldSchema: "{\"type\":\"record\",
\"name\":\"transaction\",\"namespace\":\"demo.data.contract.com\",\"fields\":[{\"name\":\"transactionId\",\"type\":\"string\"},{\"name\":
\"productId\",\"type\":\"string\"},{\"name\":\"price\",\"type\":\"double\"},{\"name\":\"productDescripton\",\"type\":\"string\"},{\"name\":
\"timestamp\",\"type\":\"long\"},{\"name\":\"firstName\",\"type\":\"string\"},{\"name\":\"lastName\",\"type\":\"string\"},{\"name\":
\"email\",\"type\":\"string\"},{\"name\":\"gender\",\"type\":\"string\"},{\"name\":\"age\",\"type\":\"int\"},{\"name\":\"address\",\"type\":
\"string\"},{\"name\":\"city\",\"type\":\"string\"},{\"name\":\"state\",\"type\":\"string\"},{\"name\":\"zipCode\",\"type\":\"string\"},
{\"name\":\"creditCardNumberType\",\"type\":\"string\"},{\"name\":\"creditCardNumber\",\"type\":\"string\"}]}"}, {validateFields: "false", 
compatibility: "BACKWARD"}]"}

Notice that this resulted in an error, with the message clearly identifying the issue: a breaking change. 
The content compatibility mode here is set to "BACKWARD", which is the default schema evolution 
mode. However, this breaking change would still not have been resolved even if the schema evolution  
mode were set to "FORWARD" or "FULL." Without migration rules, we would be limited to evolving 
our schema strictly within these compatibility constraints, unable to effectively handle breaking 
changes.

5. Next, Let's create the migration rules to handle this breaking change within the existing domain rule 
set. Copy the JSON object from Appendix 4 and paste it into a file named order-transaction-ruleset-
complex-migration.json, then save this file in the EXAMPLE_HOME directory.

6. Start by configuring the Schema Registry to perform compatibility checks only within defined 
compatibility groups. Start a new terminal and enter,

  curl http://localhost:8081/config/order-transactions-value \
  -X PUT --json "{ "compatibilityGroup": "compatibility_group" }"

We should get the following response,

{“compatibilityGroup":"compatibility_group"}

Going forward, for all schema versions of the subject order-transaction-value, the compatibility_group 
field within the metadata object will specify the Compatibility Group associated with each schema 
version.

	 	 51



7. Next, add metadata to the subject"s value schema to segment breaking changes across different 
compatibility groups. This is achieved by embedding the metadata JSON object directly within the 
old/existing schema definition. Enter the following into the terminal,

jq -n --rawfile schema order-transaction.avsc "{ schema: $schema, metadata: { properties: {  compatibility_group: 1 } } }" |
  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

We should get the following response,

{“id":1,"version":1,"metadata":{"properties":{"compatibility_group":"1"}},"schema":"{\"type\":\"record\",\"name\":\"transaction\",
\"namespace\":\"demo.data.contract.com\",\"fields\":[{\"name\":\"transactionId\",\"type\":\"string\"},{\"name\":\"productId\",\"type\":
\"string\"},{\"name\":\"price\",\"type\":\"double\"},{\"name\":\"productDescripton\",\"type\":\"string\"},{\"name\":\"timestamp\",\"type\":
\"long\"},{\"name\":\"firstName\",\"type\":\"string\"},{\"name\":\"lastName\",\"type\":\"string\"},{\"name\":\"email\",\"type\":\"string\"},
{\"name\":\"gender\",\"type\":\"string\"},{\"name\":\"age\",\"type\":\"int\"},{\"name\":\"address\",\"type\":\"string\"},{\"name\":\"city\",
\"type\":\"string\"},{\"name\":\"state\",\"type\":\"string\"},{\"name\":\"zipCode\",\"type\":\"string\"},{\"name\":\"creditCardNumberType\",
\"type\":\"string\"},{\"name\":\"creditCardNumber\",\"type\":\"string\"}]}"}

8. Now, Let's add the metadata to the subject order-transaction-value schema to allow breaking 
changes into different compatibility group. We do this by adding the metadata JSON object in line 
with the new schema definition. Let's version the old schema to the new. In a new terminal enter the 
following.

jq -n --rawfile schema order-transaction-migration.avsc "{ schema: $schema, metadata: { properties: {  compatibility_group: 2 } } }" |
  curl http://localhost:8081/subjects/order-transactions-value/versions --json @-

We should get the following response,

{“id":2,"version":2,"metadata":{"properties":{"compatibility_group":"2"}},"schema":"{\"type\":\"record\",\"name\":\"transaction\",
\"namespace\":\"demo.data.contract.com\",\"fields\":[{\"name\":\"transactionId\",\"type\":\"string\"},{\"name\":\"productId\",\"type\":
\"string\"},{\"name\":\"price\",\"type\":\"double\"},{\"name\":\"productDescripton\",\"type\":\"string\"},{\"name\":\"timestamp\",\"type\":
\"long\"},{\"name\":\"first_name\",\"type\":\"string\"},{\"name\":\"lastName\",\"type\":\"string\"},{\"name\":\"email\",\"type\":\"string\"},
{\"name\":\"gender\",\"type\":\"string\"},{\"name\":\"age\",\"type\":\"int\"},{\"name\":\"address\",\"type\":\"string\"},{\"name\":\"city\",
\"type\":\"string\"},{\"name\":\"state\",\"type\":\"string\"},{\"name\":\"zipCode\",\"type\":\"string\"},{\"name\":\"creditCardNumberType\",
\"type\":\"string\"},{\"name\":\"creditCardNumber\",\"type\":\"string\"}]}"}

9. Now, we are ready to start 2 separate consumers. one for compatibility group 1 and the other for 
compatibility group 2. Create a new terminal for each and enter the following in the first terminal, 
This will be for consuming messages in compatibility group 1,

  ./bin/kafka-avro-console-consumer \
  --topic order-transactions \
  --bootstrap-server localhost:9092 \
  --property auto.register.schemas=false 

We should get the following response,

     
value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)

	 	 52



Enter the following in the second terminal, This will be for compatibility group 2

./bin/kafka-avro-console-consumer \
  --topic order-transactions \
  --bootstrap-server localhost:9092 \
  --property auto.register.schemas=false \
  --property use.latest.version=true
 

We should get the following response,

     

value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroDeserializerConfig:372)

Notice that we started 2 consumers on the same topic. By applying the Migration Rules, specifically 
the UPGRADE and DOWNGRADE rules, the producer can send messages that comply with either the 
original schema or the new schema that addresses the breaking changes.

Each consumer will receive the version specific to their designated compatibility group, ensuring 
seamless compatibility across schema versions, Let's run two producers; one for the original schema, 
compatibility group 1, and another producer to produce messages for the new schema, compatibility 
group 2. Start terminal for a producer using the original schema or compatibility group 1.

./bin/kafka-avro-console-producer \
  --topic order-transactions \
  --broker-list localhost:9092 \
  --property value.schema.id=1 \
  --property bootstrap.servers=localhost:9092 \
  --property dlq.auto.flush=true  

	 	 53



We should get the following response,

     

        value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroSerializerConfig:372)

Next start a terminal for a producer using the new schema or compatibility group 2,

  ./bin/kafka-avro-console-producer \
  --topic order-transactions \
  --broker-list localhost:9092 \
  --property value.schema.id=2 \
  --property bootstrap.servers=localhost:9092 \
  --property dlq.auto.flush=true 

We should get the following response,

     

        value.subject.name.strategy = class io.confluent.kafka.serializers.subject.TopicNameStrategy
 (io.confluent.kafka.serializers.KafkaAvroSerializerConfig:372)

11. Now we have the complete scenario setup as described in the above diagram. First Let's a message 
compliant with the original schema, compatibility group 1. Cut and paste the following JSON object in 
the producer terminal representing compatibility group one.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34, "productDescripton": 
"Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "firstName": "Sam", "lastName": 
"Murray","email":"sam.murray@yahoo.com" ,"gender": "Female", "age": 67, "address": "9900 Curtis Field Suite 242", "city": "West 
Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": "Visa", "creditCardNumber": "5541123132728247"}

12. Now Let's check both of the consumers to verify the correct version of the message has been delivered 
to the consumer expecting the original schema and the other consumer expecting the new scheme. 
Below is the response found in the consumer expecting the original schema.

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"firstName":"Sam","lastName":"Murray","email":"sam.murray@yahoo.com","gender":"Female
","age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland”,"state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

	 	 54



Notice the field  “firstName”:"Sam” is in the correct format for the original schema.

Next, Let's look at the response from consumers expecting the message to be translated to the schema.

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"first_name":"Sam","lastName":"Murray","email":"sam.murray@yahoo.com","gender":"Female
","age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland","state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

Notice the field  “first_name”:”Sam” is in the correct format for the new schema. The UPGRADE 
migration worked. The produced message was in the old format, but the upgrade rule upgraded the 
message to the new scheme format, which is the format this producer expected

13. Now Let's try sending the message in the new scheme format and see how the DOWNGRADE 
migration roll worked. Cut and paste the following JSON object onto the producer expecting the new 
schema, compatibility group 2.

{"transactionId": "1f04e109-73a8-495c-a7b9-674c7779a130", "productId": "4304360364601", "price": 874.34, "productDescripton": 
"Stainless steel garden trowel with ergonomic handle.", "timestamp": 1729184505, "first_name": "Fred", "lastName": 
"Murray","email":"fred.murray@yahoo.com" ,"gender": "Female", "age": 67, "address": "9900 Curtis Field Suite 242", "city": "West 
Katieland", "state": "VA", "zipCode": "41744", "creditCardNumberType": "Visa", "creditCardNumber": “5541123132728247"}

14. Now Let's check both of the consumers to verify the correct version of the message has been delivered 
to the consumer expecting the original schema and the other consumer expecting the new scheme. 
Below is the response found in the consumer expecting the original schema.

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"firstName":"Sam","lastName":"Murray","email":"sam.murray@yahoo.com","gender":"Female
","age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland”,"state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

Notice the field  “firstName”:Sam” is in the correct format for the original schema. 

	 	 55



{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"firstName":"Fred","lastName":"Murray","email":"fred.murray@yahoo.com","gender":"Female",
"age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland","state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

Notice the field  “firstName”:Fred” is in the correct format for the original schema.

Knowledge check to consumer expecting the new format, compatibility group 2

{"transactionId":"1f04e109-73a8-495c-a7b9-674c7779a130","productId":"4304360364601","price":874.34,"productDescripton":"Stainless 
steel garden trowel with ergonomic 
handle.","timestamp":1729184505,"first_name":"Fred","lastName":"Murray","email":"fred.murray@yahoo.com","gender":"Female",
"age":67,"address":"9900 Curtis Field Suite 242","city":"West 
Katieland","state":"VA","zipCode":"41744","creditCardNumberType":"Visa","creditCardNumber":"5541123132728247"}

Notice the field  “first_name”:"Fred” is in the correct format for the new schema.

The migration rules behaved as expected. The downgrade migration rule was executed to take the 
message produced in the new format, compatibility group 2 and downgraded it to the old schema for 
the consumer expecting the old schema.

The upgrade migration rule also worked correctly. When the message was produced using the old 
schema, it upgraded the message to the new Schemin, which that particular consumer was expecting. 

As shown in his overall example, we can use consulate platform data contracts using migration rules to 
mediate the scheme of migration that involves breaking changes. This is a very powerful tool Dillon 
has multiple versions of a given scheme to be used once. It provides a service level 

	 	 56



Conclusion: Governance with Data-in-Motion

The implementation of robust governance for data-in-motion is essential for ensuring data quality, consistency, 
and compliance in modern distributed systems. By leveraging tools such as the Confluent Schema Registry, 
Data Contracts, and associated governance frameworks, organizations can establish centralized, enforceable 
standards that streamline data management and improve pipeline reliability

Key components like schema validation, metadata enrichment, and dynamic rule sets enable both structural and 
semantic data governance at the source, embodying the "shift-left" philosophy. This approach minimizes 
downstream errors and reduces the operational burden on consumers. Advanced features such as compatibility 
groups and migration rules further enhance adaptability, allowing systems to evolve seamlessly while 
maintaining compatibility across schema versions.

Through practical examples and clear methodologies, this paper demonstrates how to design and execute 
governance strategies that balance real-time enforcement with long-term data lifecycle management. As data-
driven architectures continue to scale, effective governance of data-in-motion ensures not only operational 
efficiency but also adherence to critical business, regulatory, and compliance requirements, solidifying Kafka-
based systems as a cornerstone of modern data ecosystems.

Appendix 1: docker-compose.yml:
The Confluent Platform ecosystem used in the above examples. Cut and paste the following section into a file named 
docker-compose.yml. This is aYAML file, make sure all the columns maintainer their spacing. 
---
version: "2"
services:
  zookeeper:
    image: confluentinc/cp-zookeeper:7.7.1
    hostname: zookeeper
    container_name: zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000

  broker:
    image: confluentinc/cp-server:7.7.1

	 	 57



    hostname: broker
    container_name: broker
    depends_on:
      - zookeeper
    ports:
      - "9092:9092"
      - "9101:9101"
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_ZOOKEEPER_CONNECT: "zookeeper:2181"
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:29092,PLAINTEXT_HOST://localhost:9092
      KAFKA_METRIC_REPORTERS: io.confluent.metrics.reporter.ConfluentMetricsReporter
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1  
      KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
      KAFKA_CONFLUENT_LICENSE_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_CONFLUENT_BALANCER_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
      KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
      KAFKA_JMX_PORT: 9101
      KAFKA_JMX_HOSTNAME: localhost
      KAFKA_CONFLUENT_SCHEMA_REGISTRY_URL: http://schema-registry:8081
      CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker:29092
      CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1
      CONFLUENT_METRICS_ENABLE: "true"
      CONFLUENT_SUPPORT_CUSTOMER_ID: "anonymous"

  schema-registry:
    image: confluentinc/cp-schema-registry:7.7.1
    hostname: schema-registry
    container_name: schema-registry
    depends_on:
      - broker
    ports:
      - "8081:8081"
    environment:
      SCHEMA_REGISTRY_HOST_NAME: schema-registry
      SCHEMA_REGISTRY_RESOURCE_EXTENSION_CLASS: io.confluent.kafka.schemaregistry.rulehandler.RuleSetResourceExtension
      SCHEMA_REGISTRY_KAFKASTORE_BOOTSTRAP_SERVERS: "broker:29092"
      SCHEMA_REGISTRY_LISTENERS: http://0.0.0.0:8081

  connect:
    image: cnfldemos/cp-server-connect-datagen:0.6.4-7.6.0
    hostname: connect
    container_name: connect
    depends_on:
      - broker
      - schema-registry
    ports:
      - "8083:8083"
    environment:
      CONNECT_BOOTSTRAP_SERVERS: "broker:29092"
      CONNECT_REST_ADVERTISED_HOST_NAME: connect
      CONNECT_GROUP_ID: compose-connect-group
      CONNECT_CONFIG_STORAGE_TOPIC: docker-connect-configs
      CONNECT_CONFIG_STORAGE_REPLICATION_FACTOR: 1
      CONNECT_OFFSET_FLUSH_INTERVAL_MS: 10000
      CONNECT_OFFSET_STORAGE_TOPIC: docker-connect-offsets
      CONNECT_OFFSET_STORAGE_REPLICATION_FACTOR: 1

	 	 58



      CONNECT_STATUS_STORAGE_TOPIC: docker-connect-status
      CONNECT_STATUS_STORAGE_REPLICATION_FACTOR: 1
      CONNECT_KEY_CONVERTER: org.apache.kafka.connect.storage.StringConverter
      CONNECT_VALUE_CONVERTER: io.confluent.connect.avro.AvroConverter
      CONNECT_VALUE_CONVERTER_SCHEMA_REGISTRY_URL: http://schema-registry:8081
      # CLASSPATH required due to CC-2422
      CLASSPATH: /usr/share/java/monitoring-interceptors/monitoring-interceptors-7.7.1.jar
      CONNECT_PRODUCER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor"
      CONNECT_CONSUMER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor"
      CONNECT_PLUGIN_PATH: "/usr/share/java,/usr/share/confluent-hub-components"
      CONNECT_LOG4J_LOGGERS: org.apache.zookeeper=ERROR,org.I0Itec.zkclient=ERROR,org.reflections=ERROR

  control-center:
    image: confluentinc/cp-enterprise-control-center:7.7.1
    hostname: control-center
    container_name: control-center
    depends_on:
      - broker
      - schema-registry
      - connect
      - ksqldb-server
    ports:
      - "9021:9021"
    environment:
      CONTROL_CENTER_BOOTSTRAP_SERVERS: "broker:29092"
      CONTROL_CENTER_CONNECT_CONNECT-DEFAULT_CLUSTER: "connect:8083"
      CONTROL_CENTER_KSQL_KSQLDB1_URL: "http://ksqldb-server:8088"
      CONTROL_CENTER_KSQL_KSQLDB1_ADVERTISED_URL: "http://localhost:8088"
      CONTROL_CENTER_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"
      CONTROL_CENTER_REPLICATION_FACTOR: 1
      CONTROL_CENTER_INTERNAL_TOPICS_PARTITIONS: 1
      CONTROL_CENTER_MONITORING_INTERCEPTOR_TOPIC_PARTITIONS: 1
      CONFLUENT_METRICS_TOPIC_REPLICATION: 1
      PORT: 9021

  ksqldb-server:
    image: confluentinc/cp-ksqldb-server:7.7.1
    hostname: ksqldb-server
    container_name: ksqldb-server
    depends_on:
      - broker
      - connect
    ports:
      - "8088:8088"
    environment:
      KSQL_CONFIG_DIR: "/etc/ksql"
      KSQL_BOOTSTRAP_SERVERS: "broker:29092"
      KSQL_HOST_NAME: ksqldb-server
      KSQL_LISTENERS: "http://0.0.0.0:8088"
      KSQL_CACHE_MAX_BYTES_BUFFERING: 0
      KSQL_KSQL_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"
      KSQL_PRODUCER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor"
      KSQL_CONSUMER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor"
      KSQL_KSQL_CONNECT_URL: "http://connect:8083"
      KSQL_KSQL_LOGGING_PROCESSING_TOPIC_REPLICATION_FACTOR: 1
      KSQL_KSQL_LOGGING_PROCESSING_TOPIC_AUTO_CREATE: "true"
      KSQL_KSQL_LOGGING_PROCESSING_STREAM_AUTO_CREATE: "true"

  ksqldb-cli:

	 	 59



    image: confluentinc/cp-ksqldb-cli:7.7.1
    container_name: ksqldb-cli
    depends_on:
      - broker
      - connect
      - ksqldb-server
    entrypoint: /bin/sh
    tty: true

  ksql-datagen:
    image: confluentinc/ksqldb-examples:7.7.1
    hostname: ksql-datagen
    container_name: ksql-datagen
    depends_on:
      - ksqldb-server
      - broker
      - schema-registry
      - connect
    command: "bash -c "echo Waiting for Kafka to be ready... && \
                       cub kafka-ready -b broker:29092 1 40 && \
                       echo Waiting for Confluent Schema Registry to be ready... && \
                       cub sr-ready schema-registry 8081 40 && \
                       echo Waiting a few seconds for topic creation to finish... && \
                       sleep 11 && \
                       tail -f /dev/null""
    environment:
      KSQL_CONFIG_DIR: "/etc/ksql"
      STREAMS_BOOTSTRAP_SERVERS: broker:29092
      STREAMS_SCHEMA_REGISTRY_HOST: schema-registry
      STREAMS_SCHEMA_REGISTRY_PORT: 8081

  rest-proxy:
    image: confluentinc/cp-kafka-rest:7.7.1
    depends_on:
      - broker
      - schema-registry
    ports:
      - 8082:8082
    hostname: rest-proxy
    container_name: rest-proxy
    environment:
      KAFKA_REST_HOST_NAME: rest-proxy
      KAFKA_REST_BOOTSTRAP_SERVERS: "broker:29092"
      KAFKA_REST_LISTENERS: "http://0.0.0.0:8082"
      KAFKA_REST_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"

Appendix 2: Example Avro Schema 
order-transaction.avsc:

 The following is the AVRO schema used in our examples. Please copy and paste into a file called order – 
transaction.avsc in the EXAMPLE_HOME directory

{
    "name": "transaction",

	 	 60



    "namespace": "demo.data.contract.com",
    "type": "record",
    "fields": [
        {
            "name": "transactionId",
            "type": "string"
        },
        {
            "name": "productId",
            "type": "string"
        },
        {
            "name": "price",
            "type": "double"
        },
        {
            "name": "productDescripton",
            "type": "string"
        },
        {
            "name": "timestamp",
            "type": "long"
        },
        {
            "name": "firstName",
            "type": "string"
        },
        {
            "name": "lastName",
            "type": "string"
        },
        {
            "name": "email",
            "type": "string"
        },        {
            "name": "gender",
            "type": "string"
        },
        {
            "name": "age",
            "type": "int"
        },
        {
            "name": "address",
            "type": "string"
        },
        {
            "name": "city",
            "type": "string"
        },
        {
            "name": "state",
            "type": "string"
        },
        {
            "name": "zipCode",
            "type": "string"
        },
        {

	 	 61



            "name": "creditCardNumberType",
            "type": "string"
        },
        {
            "name": "creditCardNumber",
            "type": "string"
        }
    ]
}

Appendix 3: order-transaction-ruleSet-complex.json:

The following is the rule-set used in example 3. Please copy and paste into a file called order-transaction-
ruleSet-complex.json in the EXAMPLE_HOME directory

{
    "ruleSet": {
        "domainRules": [
            {
                "name": "customers_under_age_of_18_not_supported",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.age >= 18",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "unsupported_credit_card_type",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType in [\"AMEX\", \"Visa\", \"Mastercard\"]",  
                "params": {
                    "dlq.topic": "order-transactions--dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "visa_card_number_is_not_16_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? size(message.creditCardNumber) == 16:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {

	 	 62



                "name": "visa_card_number_first_digit_is_not_5",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? message.creditCardNumber.matches(\"^5[0-9]{15}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "mastercard_card_number_is_not_16_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Mastercard\" ? size(message.creditCardNumber) == 16:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "mastercard_card_number_first_digit_is_not_2",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Mastercard\" ? message.creditCardNumber.matches(\"^2[0-9]{15}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "amex_card_number_is_not_15_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"AMEX\" ? size(message.creditCardNumber) == 15:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "amex_card_number_first_digit_is_not_3",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"AMEX\" ? message.creditCardNumber.matches(\"^3[0-9]{14}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            }
        ]
    }
}

	 	 63



Appendix 4: 
order-transaction-breaking-change.json:

The following is the Avro schema is used in example 1. Please copy and paste into a file called order-
transaction-breaking-change.json in the EXAMPLE_HOME directory

{
    "name": "transaction",
    "namespace": "demo.data.contract.com",
    "type": "record",
    "fields": [
        {
            "name": "transactionId",
            "type": "string"
        },
        {
            "name": "productId",
            "type": "string"
        },
        {
            "name": "price",
            "type": "double"
        },
        {
            "name": "productDescripton",
            "type": "string"
        },
        {
            "name": "timestamp",
            "type": "long"
        },
        {
            "name": "first_name",
            "type": "string"
        },
        {
            "name": "lastName",
            "type": "string"
        },
        {
            "name": "email",
            "type": "string"
        },
        {
            "name": "gender",
            "type": "string"
        },
        {
            "name": "age",
            "type": "int"
        },
        {
            "name": "address",
            "type": "string"
        },

	 	 64



        {
            "name": "city",
            "type": "string"
        },
        {
            "name": "state",
            "type": "string"
        },
        {
            "name": "zipCode",
            "type": "string"
        },
        {
            "name": "creditCardNumberType",
            "type": "string"
        },
        {
            "name": "creditCardNumber",
            "type": "string"
        }
    ]
}

Appendix 5: 
order-transaction-ruleset-complex-mirgration.json:

The following is the rule-set used in example 4. Please copy and paste into a file called order-transaction-
ruleset-complex-migration.json in the EXAMPLE_HOME directory

{
            {
                "name": "customers_under_age_of_18_not_supported",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.age >= 18",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "unsupported_credit_card_type",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType in [\"AMEX\", \"Visa\", \"Mastercard\"]",
                "params": {
                    "dlq.topic": "order-transactions--dlq"
                },
                "onFailure": "DLQ"
            },
            {

	 	 65



                "name": "visa_card_number_is_not_16_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? size(message.creditCardNumber) == 16:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "visa_card_number_first_digit_is_not_5",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Visa\" ? message.creditCardNumber.matches(\"^5[0-9]{15}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "mastercard_card_number_is_not_16_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Mastercard\" ? size(message.creditCardNumber) == 16:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "mastercard_card_number_first_digit_is_not_2",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"Mastercard\" ? message.creditCardNumber.matches(\"^2[0-9]{15}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "amex_card_number_is_not_15_digits_long",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",
                "expr": "message.creditCardNumberType == \"AMEX\" ? size(message.creditCardNumber) == 15:true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            },
            {
                "name": "amex_card_number_first_digit_is_not_3",
                "kind": "CONDITION",
                "type": "CEL",
                "mode": "WRITE",

	 	 66



                "expr": "message.creditCardNumberType == \"AMEX\" ? message.creditCardNumber.matches(\"^3[0-9]{14}$\"):true",
                "params": {
                    "dlq.topic": "order-transactions-dlq"
                },
                "onFailure": "DLQ"
            }
        ],
        "migrationRules": [
            {
              "name": "changeFirstNameToFirst_name",
              "kind": "TRANSFORM",
              "type": "JSONATA",
              "mode": "UPGRADE",
              "expr": "$merge([$sift($, function($v, $k) {$k != "firstName"}), {"first_name": $."firstName"}])"
            },
            {
              "name": "changeFirst_nameToFirstName",
              "kind": "TRANSFORM",
              "type": "JSONATA",
              "mode": "DOWNGRADE",
              "expr": "$merge([$sift($, function($v, $k) {$k != "first_name"}), {"firstName": $."first_name"}])"
            }
          ]
    }
]
}
}

About Data-Blitz:

Data-Blitz specializes in cloud computing, event processing, and data governance. Our team is highly skilled in 
cloud-based architectures, data in motion, data pipelines, and AI. We provide expert support in Data 
Engineering, AWS, Azure, and GCP cloud environments, Apache/Confluent Kafka, IoT Edge devices, NoSQL 
and SQL databases, and Lucene-based search engines like Elasticsearch and Solr. Our expertise also extends to 
AI, with a focus on PyTorch, TensorFlow, Generative AI, and prompt engineering using LangChain and vector 
databases. We have experienced architects, developers, and agile scrum leads who are rigorously vetted and 
only begin billing after demonstrating proficiency with the target technology. By maintaining low margins, we 
offer competitive pay to our consultants, helping us attract and retain top talent. 

	 	 67



About the Author:

I'm Paul Harvener, a Principal Consultant at Data-Blitz. I have a background in Computational Mathematics, 
Applied Physics, and Computer Science. My career began in the defense sector, where I specialized in 
Operations Research, modeling tactical warfare, and simulating satellite communication systems using Discrete 
Event Processing, Dynamic Programming, Monte Carlo Simulation, and Markov Chains. I later transitioned to 
the unclassified world of the telecommunications industry, designing telephony management applications.  
Next, I moved to a truly transformational company called Borland. My tenure at Borland saw me developing 
distributed processing systems using CORBA, which ultimately inspired me to co-found Data-Blitz,  where we 
specialize in High-Performance, Distributed, Real-Time, and Event-driven data processing systems. In my early 
days at Data-Blitz, I authored a product called Plumber. Plumber was a distributed compute engine that allowed 
organizations to deploy truly distributed application stacks across an arbitrary set of computers. It ran under 
MESO, Vagrant, and was later ported to Docker. Today, this concept is known as Serverless Computing. But in 
the end, there"s nothing serverless about it. Plumber was sunsetted in 2019 when various public cloud vendors 
offered a much more flexible approach. You can reach me at pharvener@data-blitz.com.

	 	 68


	Governance for Data-in-Motion
	Overview:
	Confluent Platform’s Data Governance Ecosystem

	Schema Registry Migration Summary:
	Data Contract RuleSets:

	POC Examples:
	Example 1 Data Structural Governance:
	Example 2 Data Quality Governance:
	Example 3 Complex Data Quality Governance:
	Example 4: Data Transformation Governance:
	Conclusion: Governance with Data-in-Motion

	Appendix 1: docker-compose.yml:
	Appendix 2: Example Avro Schema
	order-transaction.avsc:
	Appendix 3: order-transaction-ruleSet-complex.json:
	Appendix 4:
	order-transaction-breaking-change.json:
	Appendix 5:
	order-transaction-ruleset-complex-mirgration.json:
	About Data-Blitz:
	About the Author:

